The questions to be addressed are:
 • what are the ingredients in tattoo inks
 • toxicity of common ingredients in tattoo inks

Summary
Although there are definitely risks to tattooing they seem to be occurring infrequently. As a consequence of federal regulations affecting the permissive mercury levels the severity and frequency of skin reactions should decrease. Since the inks we tested and those tested by Timko\(^1\) found no lead, mercury, or cadmium the more severe reactions of eczema, exfoliative dermatitis, swelling, and lichenoid reactions are probably going to become more uncommon. Aluminum and iron are still problematic with the long-term consequences not fully understood. Foreign body reactions and granulomas at the tattoo sites are going to continue as a natural consequence of placing foreign particular matter in the dermis.

Tattoo Ink Ingredients
The tattoo inks were purchased in Salt Lake City and represented as containing plant derived colors. I now have reason, based on what our laboratory found on analysis, to doubt that all of the colors are plant-based but surely some are.

The inks tested by USANA laboratories are Tribal Black, Battleship Grey, Steel Blue, Golden Yellow, Crimson Red, Grassy Green, and Deep Blue; all have less than 1ppm As, Pb, Hg, Cd.

All have a significant quantity of both Fe and Al, much greater than 1ppm. These findings now raise the question as to the toxicity of iron and aluminum. The manufacturer of all colors tested is Tommie’s Supplies of Somers, Connecticut. We will try four more colors by other suppliers one of which is manufactured in China to see if there is any difference.

The absence of lead, mercury, and cadmium in any of our samples and those of Timko\(^1\) (see APPENDIX B) is a significant finding, because these are classic elements of the color profiles used for centuries in tattoo inks. Presumably their absence is at least partially due to the enactment of the Food Drug and Cosmetic Act of 1976 which limited concentrations of lead to 10 ppm and mercury to 3 ppm in cosmetics\(^2\) with the exception of skin whiteners wherein mercury cannot be at levels above 1 ppm\(^3\).

Schmidt et al. observed in a 2004 paper “Elemental analysis revealed multiple metallic components in the dyes; these materials may be responsible for persistent foreign body reactions even years after being placed in the skin. Silicon, aluminium, titanium and
copper were found in various yellow, green and red dyes. The composition of various dyes of the same colour from different sources was highly variable.”

The following are common pigments currently used in tattoo inks:

Black
- Iron Oxide (Fe₃O₄)
- Iron Oxide (FeO)
- Carbon
- Logwood; Logwood is a Heartwood extract from *haematoxylon campechianum* found in Central America and the West Indies.

Brown
- Ochre: ocher is composed of iron (ferric) oxides mixed with clay. Raw ocher is yellowish. When dehydrated through heating, ocher changes to a reddish brown color.

Red
- Cinnabar (HgS)
- Cadmium Red (CdSe)
- Iron Oxide (Fe₂O₃)
- Napthol-AS-pigment
- Sienna (ferric hydrate)
- Sandalwood
- Brazilwood
- Organic pigments (aromatic azo compounds)

Orange
- disazo diarylide and/or disazo pyrazolone
- Cadmium seleno-sulfide

Flesh
- Ochres (iron oxides mixed with clay)

Yellow
- Cadmium Yellow (CdS, CdZnS)
- Ochres
- Curcuma Yellow (Curcuma is derived from plants of the ginger family; aka tumeric or curcumin)
- Chrome Yellow (PbCrO₄, mixed with PbS)
- disazo diarylide

Green
- Chromium Oxide (Cr₂O₃), Casalis Green or Anadomis Green
- Malachite [Cu₂(CO₃)(OH)₂]
- Ferrocyanides and Ferricyanides
- Lead Chromate
• Monoazo pigment: The monoazo compounds are neurotoxic.6
• Cu/Al phthalocyanine
• Cu phthalocyanine

Purple
• Manganese, aluminum

Blue
• Azure Blue
• Cobalt Blue (Cobalt aluminate)
• Cu-phthalocyanine pigments from minerals include copper (II) carbonate (azurite), sodium aluminum silicate (lapis lazuli), cadmium copper silicate (Egyptian blue), other cobalt aluminum oxides and chromium oxides. The safest blues and greens are copper salts, such as copper phthalocyanine. Copper phthalocyanine pigments have FDA approval for use in infant furniture and toys and contact lenses. The copper-based pigments are considerably safer or more stable than cobalt and ultramarine pigments.

Violet
• Manganese Violet (manganese ammonium pyrophosphate)
• Various aluminum salts
• Quinacridone
• Dioxazine/carbazole

White
• Lead White (Lead carbonate)
• Titanium Dioxide (TiO$_2$)
• Barium Sulfate (BaSO$_4$)
• Zinc Oxide (ZnO)

The ubiquitous presence of aluminum in all of the colors tested leads to the conclusion that the colors in most tattoo inks, including the ones that we acquired, are aluminum lakes. An aluminum Lake is a color extended on aluminum oxide by adsorption or co-precipitation. Because lakes are not soluble in water they are used when it’s important to keep colors from bleeding, running, or mixing with another color, rendering them ideal for tattoo inks. Generally, lakes are not as colorfast as many inorganic dyes but their colors are more brilliant giving an aesthetically pleasing tattoo and a satisfied customer.

Toxicology
Dyes and their mordants (Cd, Hg, Fe, and Al) travel from the skin through the lymph system and are deposited in the lymph nodes.7, 8 The long-term systemic health consequences on the individual of the metal carriers found in tattoo inks is not known.

Note: A mordant is a substance used to set dyes on fabrics or tissue sections by forming a coordination complex with the dye which then attaches to the fabric or tissue. It may be used for dyeing fabrics, or for intensifying stains in cell or tissue preparations. A
mordant is always a polyvalent metal ion. The resulting coordination complex of dye and ion is colloidal.

Schmitzl, in his 2004 paper concludes that “The tattoo dyes currently in use contain a number of components which cannot be regarded as "tissue inert". Chronic foreign body reactions can be expected even after many years."

Among other observable conditions resulting from tattoo inks are eczematous hypersensitivity reactions and photosensitivity reactions. Eczematous hypersensitivity reactions are characterized by localized eczematous eruptions and/or exfoliative dermatitis with the reaction most commonly associated with red pigments especially mercury sulfide.

The photosensitive reactions are most commonly caused by sunlight exposure of the yellow (cadmium sulfide) tattoo pigments. Edema and erythema develop upon exposure to sunlight. Since cadmium sulfide is the light-sensitive material used in photoelectric cells; therefore, the reaction is believed to be phototoxic. No good data on this theory exists.

Chromium and green tattoo pigment is associated with eczematous reactions at the side of the pigment, eczema of the hands, and generalized eczematous reactions.

Given the significant amounts of aluminum found in the inks we purchased and the aluminum compounds reported in the references above, it is not surprising to find that skin pathologies, including granulomas, are commonly seen around tattoos. These granulomas produce foreign body reactions with numerous pigment filled giant cells in the ring of lymphocytes with inflammation, erythema, and edema. Although Mercury is most commonly associated with granulomatous tattoo reactions, there have been reported reactions involving chromium and cobalt.

As is the case with granulomatous, lichenoid reactions to the tattoo dyes involves, in most cases, Mercury. Typically hyperkeratotic lichen planus are usually found in the red portion of the tattoo although there has been a report of a generalized lichen planus reaction in a patient with lichenoid reaction.

Note: A lichenoid is a discrete flat papule or an aggregate of papules giving a patterned configuration resembling lichen growing on rocks.

Note: lichen planus is an eruption of flat-topLed, shiny, violaceous (purple) papules on flexor surfaces
An interesting and unexpected complication of tattooing is reported to be painful MRI for those who have tattoos containing ferromagnetic compounds such as iron oxide14. The pain levels can get so high that it requires the cessation of the procedure.

Reference List

3. Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic preparations also regarded as drugs. 21 C.F.R. 700.13. 2009. Ref Type: Statute

APPENDIX A

Chemical Structures of Some Tattoo Pigments

Malachite [$\text{Cu}_2(\text{CO}_3)(\text{OH})_2$]
APPENDIX B

Table 1. Percentage of Elemental Composition of Tattoo Pigments Obtained by X-ray Diffraction*

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>Color</th>
<th>Titanium</th>
<th>Aluminum</th>
<th>Silicon</th>
<th>Copper</th>
<th>Chromium</th>
<th>Iron</th>
<th>Chlorine</th>
<th>Sulfur</th>
<th>Carbon</th>
<th>Oxygen</th>
<th>Magnesium</th>
</tr>
</thead>
<tbody>
<tr>
<td>8006</td>
<td>Black</td>
<td>[22]</td>
<td>3.25</td>
<td></td>
<td>65.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8007</td>
<td>White</td>
<td>1.02</td>
<td>1.74</td>
<td></td>
<td>85.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8008</td>
<td>Fire red</td>
<td>2.07</td>
<td>2.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8009</td>
<td>Fire No. 1 (tan)</td>
<td>23.21</td>
<td>1.75</td>
<td>7.65</td>
<td>10.76</td>
<td>23.29</td>
<td>19.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8010</td>
<td>Indian brown</td>
<td>21.38</td>
<td>0.95</td>
<td>7.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8011</td>
<td>Crimson red</td>
<td>0.53</td>
<td>0.06</td>
<td>17.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8012</td>
<td>Devil’s red</td>
<td>0.75</td>
<td>3.79</td>
<td>3.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8013</td>
<td>Lotus red</td>
<td>0.17</td>
<td>3.79</td>
<td>3.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8014</td>
<td>Venetian brown</td>
<td>2.28</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8015</td>
<td>Florida orange</td>
<td>3.06</td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8016</td>
<td>Lemonyellow</td>
<td>3.41</td>
<td>3.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8017</td>
<td>White</td>
<td>28.41</td>
<td>3.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8018</td>
<td>Black</td>
<td>0.53</td>
<td>0.06</td>
<td>17.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8019</td>
<td>Permanentgreen</td>
<td>1.98</td>
<td>3.79</td>
<td>13.32</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8020</td>
<td>Emerald green</td>
<td>5.45</td>
<td>3.74</td>
<td>13.32</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8021</td>
<td>Fire green</td>
<td>4.34</td>
<td>4.08</td>
<td>12.68</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8022</td>
<td>Fire red</td>
<td>3.79</td>
<td>3.79</td>
<td>12.68</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8023</td>
<td>Sky blue</td>
<td>37.95</td>
<td>1.99</td>
<td>11.06</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8024</td>
<td>Blue green</td>
<td>4.51</td>
<td>3.79</td>
<td>13.32</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8025</td>
<td>Cerise red</td>
<td>15.15</td>
<td>2.18</td>
<td>14.46</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8026</td>
<td>Yukon white</td>
<td>14.96</td>
<td>5.02</td>
<td>13.32</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8027</td>
<td>Misty green</td>
<td>3.79</td>
<td>3.79</td>
<td>12.68</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8028</td>
<td>Misty blue</td>
<td>34.82</td>
<td>1.99</td>
<td>11.06</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8029</td>
<td>Tulip yellow</td>
<td>39.46</td>
<td>2.18</td>
<td>14.46</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8030</td>
<td>Peony pink</td>
<td>35.77</td>
<td>1.99</td>
<td>11.06</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8031</td>
<td>New blue</td>
<td>30.93</td>
<td>2.18</td>
<td>14.46</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8032</td>
<td>Blossom</td>
<td>13.54</td>
<td>0.95</td>
<td>17.72</td>
<td>10.76</td>
<td>23.29</td>
<td>19.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8033</td>
<td>Wild violet</td>
<td>55.29</td>
<td>2.88</td>
<td>23.98</td>
<td>17.12</td>
<td>14.64</td>
<td>21.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8034</td>
<td>Tulip red</td>
<td>52.01</td>
<td>1.99</td>
<td>11.06</td>
<td>73.68</td>
<td>37.95</td>
<td>54.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not applicable</td>
<td>India ink</td>
<td>100.00</td>
</tr>
</tbody>
</table>

* The numeric values in the table represent the elemental percentage in the composition of the pigment. Ellipses indicate absence. † The parenthetical number below the element represents its atomic number.